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Generative Social Science

Epstein (Complexity '99): "If you didn’t grow it you
didn’t explain it !"

Epstein (2005) "To explain a macroscopic regularity x
is to furnish a suitable microspecification that suffices
to furnish it".

Similar concerns in evolutionary game theory.

Classical game theory: steady-state. How do equilibria
arise ?

Evolutionary game theory: equilibria arise as a result
of a "learning" process.

Stochastically stable states

Best-reply learning dynamics can lead to multiple
equilibria (path dependence).

(Peyton Young) Adding small amounts of noise to
best-reply dynamics can lead to equilibrium selection.

Noise (small deviations from rationality): generative
explanation for equilibrium selection
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Games/simulations as dynamical systems

Multiagent simulations: interacting, nondeterministic
dynamical systems.

Robustness concerns: specification of interaction
network, scheduling, dynamics.

Most models assume some form of random
scheduling. Not really plausible. Scheduling can make
a difference (Huberman and Glance). Theory ?

Approach: increase robustness of the models by
considering adversarial scheduling.

Approach (1)

Start with base case result with random scheduling.
Isolate properties of random scheduling.

Gradually eliminate some of these properties ...

... Until base case result no longer true.

Identify feature of scheduler responsible for the failure.
Eliminate this property (result holds again), etc.

In the course of this process: add more realistic
features, more robust restatement of results.



Setup

Population games (Blume): agents at the vertices of a
graph. Each agent has a state.

When agent scheduled, play a game against some of
its neighbors. Changes state as a result of game

playing.

Scheduler: specifies what agent can get scheduled at
what time.

Example I: emergence of institutions
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Example I: emergence of institutions

strategies | A B

A a,a| cd
B d,c | bb

Strategy A is a strict risk-dominant equilibrium.
Thatisa—d>b—c> 0.

Selection of risk-dominant equilibria: Harsanyi and
Selten.

Specifying dynamics

When scheduled agents play using the same strategy against
each of their neighbors.

vi(z,7—;), the payoff of the ¢’'th agent, should he play
strategy z with its neighbors is
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If agent : is the one to update, 7 is the joint profile of
agents’ strategies, and z € {A, B} is the candidate
new state,
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Base case result

Peyton Young: under random scheduling the "all A"
state the uniquely stochastically stable state.

Model of emergence of standards: gold vs. silver,
driving on the left vs. right.

Unrealistic feature: random norm adoption. No
account of norm diffusion.

Properties of random schedulers

A random scheduler is:
(iy uniform: probability of getting scheduled is same.

(i) non-adaptive: who gets scheduled does not depend on
the past.
(a) who gets scheduled does not depend on who got
Sscheduled in the past.
(b) who gets scheduled does not depend on the past
outcome of game-playing.

(i) fair: in A(nlogn) steps all nodes get scheduled with
probability 1.



Adversarial analysis

allow nonuniformity (drop (i)): similar result to the one
for baseline case.

allow adaptiveness (drop (ii a+b)): can be Just as fair
as random scheduler and

only drop ii (b): assume "social network of influences"
(not necessarily the same as the game playing one).
Scheduler: random walk on this network. Result again
similar to the one for random scheduler.

by now what was easy to show for random scheduling
is quite nontrivial mathematically.

Making the result more robust

Time until convention emerges: important !

Peyton-Young (based on Morris) . Provably
small-world like structure implies 6(n) convergence
time for random scheduling.

Not true for model with contagion.

Instead of 6(n): new graph parameter related to hitting
time.

The time component of Peyton-Young’s result: now
true for new parameter.



Example II: PD with Pavlov dynamics

n agents, situated at the nodes of a graph ¢.
Each agent has a label from the set {0, 1}.

At time zero the labels are chosen either uniformly at
random, or according a fixed (but otherwise arbitrary)
global configuration.

At each step two of the players, i, j, that are connected
by an edge update their labels from X (i), X(j) to
X (1) 4+ X(j) (mod 2).

Base case result

(0,1) — (1,1)

random scheduling: "all zero" unique fixed point,
reached with probability one red for all graphs with no
isolated vertices

Convergence time (G. et al. 2002): exponential on
complete graph, star graphs, O(nlogn) on a cycle.

Nonreversible Markov chain. Correlation: network
structure — convergence time really nontrivial. More
results (Mossel and Roch, arxiv.org/math.PR October
2005)



Genealogy of the model

Shoham and Tennenholtz (AlJ 1994) "Colearning”,
distributed coordination model.

Kittock (SFI proceedings 1994) experiments, this
dynamics.

Axelrod: Pavlov dynamics for IPD.

Sidowsky "minimal social situation”, Thibaut and
Kelley, "mutual fate control" (1959).

Coleman n player MSS (2005).

Types of scheduler and issues

an edge-daemon is able to choose both players of the
interacting pair.

node-daemons choose only one of the players. The
other player: random among the neighbors.

fairness
adaptiveness



Adversarial scheduling: results

Edge daemons are too strong. One can preclude
stabilization on "almost all" graphs, even for a
non-adaptive daemon.

Nonadaptive node daemons: similar to random
schedulers.

Adaptive node daemons. similar to random schedulers
on almost all graph topologies (in random graph
sense).

Convergence time

No mathematical results for convergence times adversarial
scheduling. Convergence time seems consistent with the
O(nlogn) convergence time for random schedulers.

m|n 4 8 16 32 64 128

id | 2486 | 4.225 | 6.401 8.33 | 10.498 | 13.135
p3 | 2469 | 4039 | 5807 |7.662 | 9639 | 11.718

wln | 256 512 1024

id | 16.091 | 17.954 | 20.331
p3 | 14.323 | 16.054 | 19.826
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What about simulations ?

other mathematical model (omitted) Schelling’s
segregation model (Peyton Young).

model checking: technique used for hardware
verification. Search for "bad events".

scheduler: automaton. "Bad event": formula in
temporal logic. Techniques from automata theory
(Vardi and Wolper ).

More robust: model checking for interactive Markov
chains (Herrmans).

LONG TERM: adapting model checking MC to agent
systems.

Conclusions

Adversarial analysis is surprisingly feasible ...

... leads to robust results ...

... and could be used for agent-based simulations as
well.

Theoretical results:
with M.V. Marathe (VBI), S.S. Ravi (SUNY Albany CS).

submissions to Games and Economic Behavior,
Theoretical Computer Science. Available on request.



	ADVERSIAL ANALYSIS OF EVOLUTIONARY MODELS AND MULTIAGENT SYSTEMS

